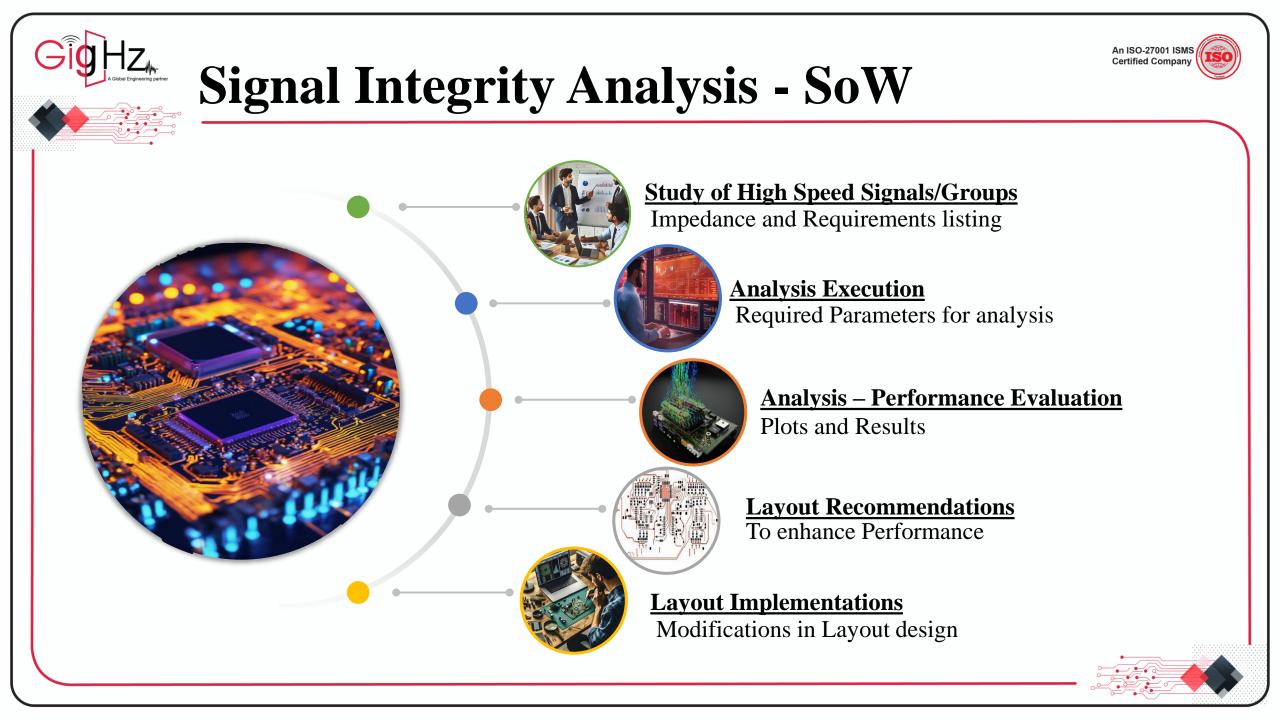


Signal Integrity Analysis Autonomous Valet Parking System

Scope : Signal Integrity Analysis **Application :** Advanced Driver Assistance System (ADAS)

Signal integrity is essential for Autonomous Valet Parking (AVP) systems within Advanced Driver Assistance Systems (ADAS). AVP relies on precise electronic communication via sensors, cameras, and software to autonomously identify and navigate parking spaces, and to control vehicle dynamics such as steering, acceleration, and braking. This technology enables seamless, efficient parking, enhancing convenience and safety by allowing drivers to leave their vehicles at the entrance of a parking facility while the system handles the parking process.


Signal Integrity Analysis - Challenges

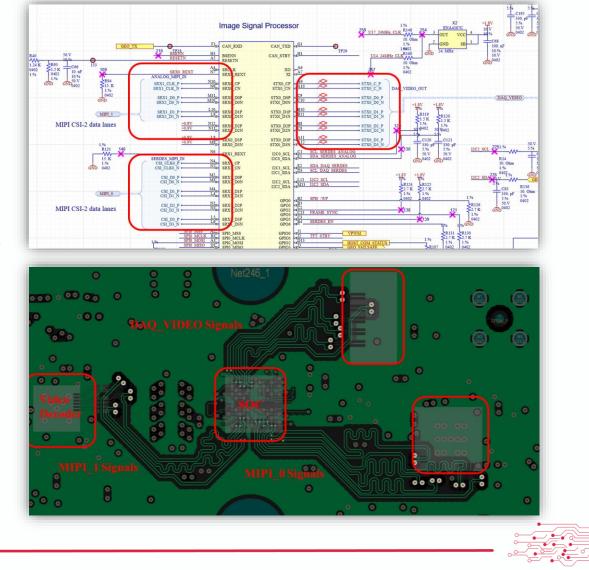
The client has requested a signal integrity analysis of the layout to ensure its performance. The following highlights the key technical challenges associated with this analysis.

Challenges

- Signal Degradation
- Crosstalk
- Timing Variations and Jitter
- Impedance Matching
- Signal Attenuation
- Via and Connector Impedance
- Trace Routing and Layout Challenges
- Return Path Issues
- Power Distribution Network
- Continuous Reference Planes
- Noise and Electromagnetic Interference (EMI)

GigHz A Global Engineering partner Stud

Study of High Speed Signals / Groups


The High Speed Signal circuits in the project are studied thoroughly to evaluate the performance.

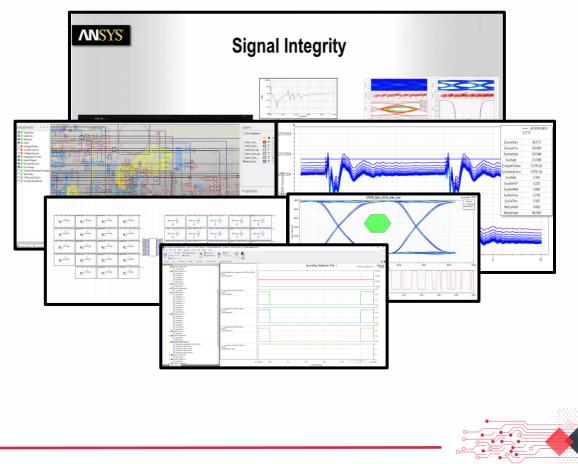
High Speed Signals

- MIPI_0 De-serializer to SoC
- MIPI_1 Video Decoder to SoC
- DAQ_VIDEO SoC to Expansion Connector

High Speed Signal Circuits

- De-serializer
- SOC
- Video Decoder

Analysis Execution

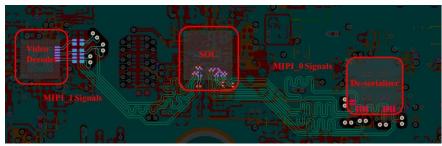

We executed the analysis in **Ansys-SI Wave** tool, to evaluate the signal integrity performance of the layout.

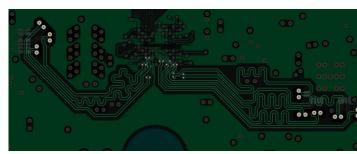
Problems of Signal Integrity is identified from two levels:

- Interconnect level
- Systems-level

Quantities to calculate include:

- ✓ Edge Rate
- ✓ Characteristic Impedance
- ✓ Signal-to-Noise Ratio (SNR) Margin
- ✓ Timing Skew
- ✓ Simultaneous Switching Noise Impact

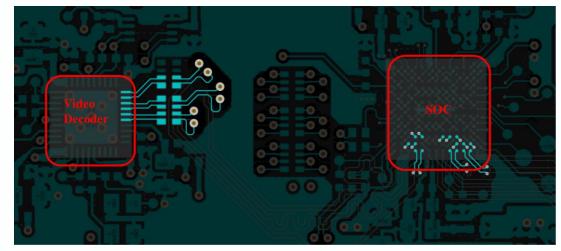


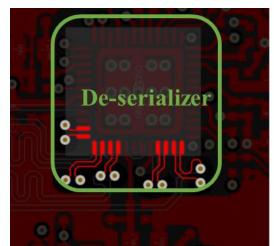

Analysis Execution (Cont.)

MIPI signals – MIPI_0 – De-serializer to SoC MIPI_1 – Video Decoder to SoC

Layout - Routing

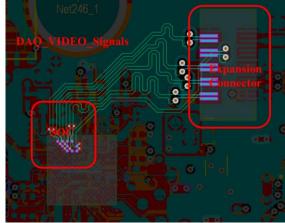
Layer 5

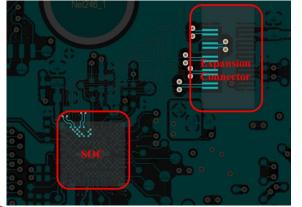

Layer 1


Trace Lengths

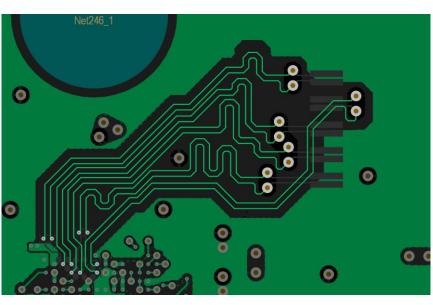
MIPI_1.SRX1_CLK_N-CK_N			1494.551			1494.551	
MIPI_1.SRX1_CLK_P-CK_P			1494.551			1494.551	
MIPI_1.SRX1_D0_N-D0_N			1494.428			1494.428	
MIPI_1.SRX1_D0_P-D0_P			1494.428			1494.428	
MIPI_1.SRX1_D1_N-D1_N			1494.428			1494.428	
MIPI_1.SRX1_D1_P-D1_P	4		1494.428	0		1494.428	0
Name	Nod	Sigr	nal Leng	Total	Rou	ted Len	Unrout –
MIPI_0.CSI_CLK0_N		163	5.264		1637	.228	
MIPI_0.CSI_CLK0_P		163	5.264		1636	5.838	
MIPI_0.CSI_D0_N		163	5.141		1636	5.325	
MIPI_0.CSI_D0_P		163	5.141		1637	.832	
MIPI_0.CSI_D1_N		163	5.141		1636	5.327	
MIPI_0.CSI_D1_P		163	5.141		1636	5.325	
MIPI_0.CSI_D2_N		163	5.141		1636	5.325	
MIPI_0.CSI_D2_P		163	5.141		1636	5.325	
MIPI_0.CSI_D3_N		163	5.141		1636	5.325	
MIPI_0.CSI_D3_P	2	163	5.141	0	1636	5.325	0

CLK and Data's are routed with same trace length (closely)



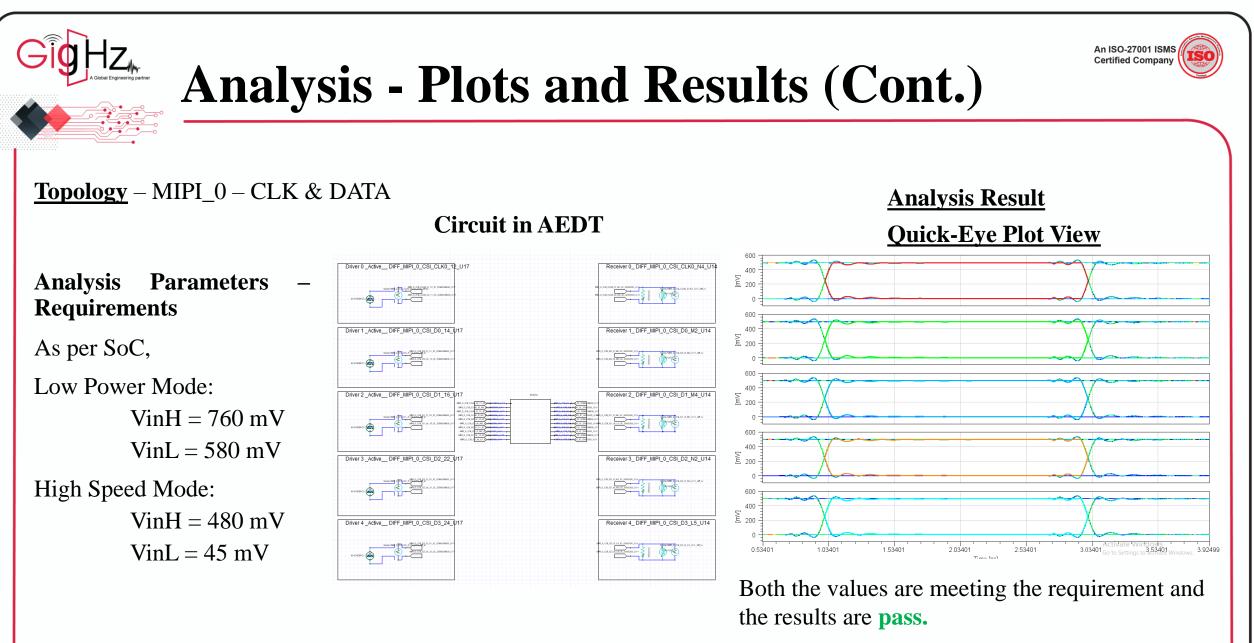

Analysis Execution (Cont.)

DAQ_VIDEO – SoC to Expansion Connector

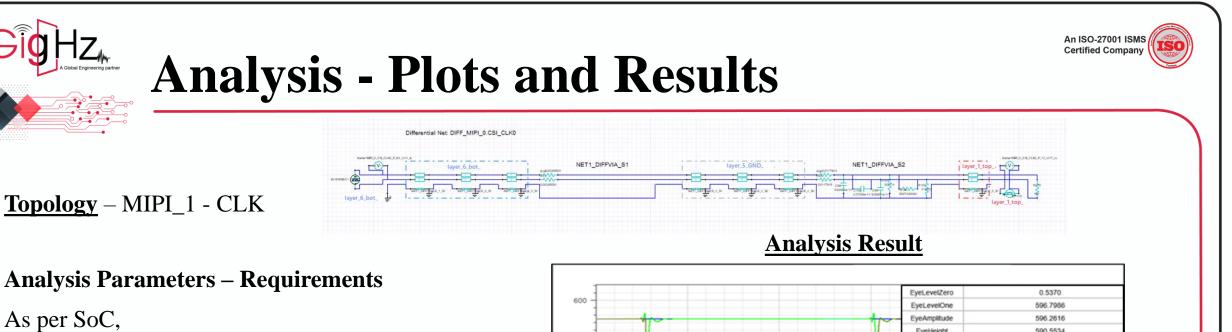

Layout - Routing

Layer 3

Trace Lengths

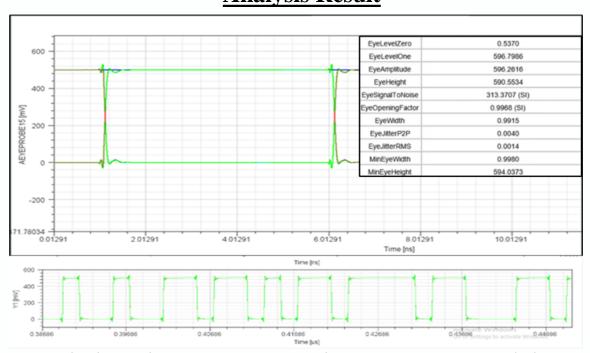

Name	Node	Signal Lengt	Total	Routed Leng	Unrouted
DAQ_VIDEO.STX0_C_N	2	1047.723	0	1049.137	0
DAQ_VIDEO.STX0_C_P	2	1047.723	0	1049.082	0
DAQ_VIDEO.STX0_D0_N	2	1047.6	0	1049.014	0
DAQ_VIDEO.STX0_D0_P	2	1047.6	0	1049.014	0
DAQ_VIDEO.STX0_D1_N	2	1047.6	0	1049.015	0
DAQ_VIDEO.STX0_D1_P	2	1047.6	0	1049.014	0
DAQ_VIDEO.STX0_D2_N	2	1047.6	0	1048.558	0
DAQ_VIDEO.STX0_D2_P	2	1047.6	0	1048.559	0
DAQ_VIDEO.STX0_D3_N	2	1047.6	0	1049.121	0
DAQ_VIDEO.STX0_D3_P	2	1047.6	0	1049.122	0

CLK and Data's are routed with same trace length (closely)



An ISO-27001 ISM

Certified Company



Low Power Mode:

VinH = 760 mVVinL = 580 mV

High Speed Mode:

VinH = 480 mVVinL = 45 mV

Both the values are meeting the requirement and the results are **pass**.

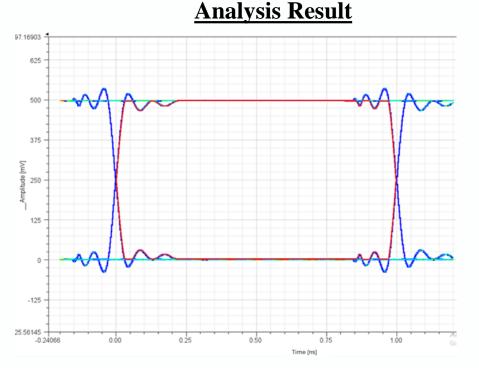
Analysis - Plots and Results (Cont.)

Topology – DAQ_VIDEO- CLK & DATA

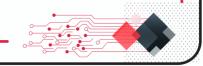
Analysis Parameters – Requirements

As per SoC,

 $V_{OH} = 1600 mV$


$$VOL = 800mV$$

Signal Net Delay Report

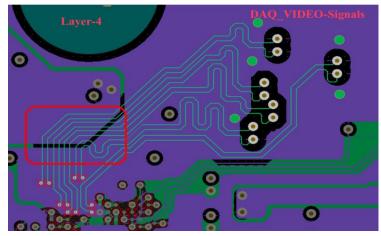

Net	Length (mm)	Differential Pair Length Mismatch (mm)	Delay (ns)	Differential Pair Delay Mismatch (ps
DAQ_VIDEO.STX0_C_P (Differential Net: DIFF_DAQ_VIDEO.STX0_C {DAQ_VIDEO.STX0_C_P and DAQ_VIDEO.STX0_C_N})	25.721	0.000	177.224	-0.29
DAQ_VIDEO.STX0_C_N (Differential Net: DIFF_DAQ_VIDEO.STX0_C (DAQ_VIDEO.STX0_C_P and DAQ_VIDEO.STX0_C_N))	25.721	-0.000	177.518	0.29
DAQ_VIDEO.STX0_D0_P (Differential Net: DIFF_DAQ_VIDEO.STX0_D0 (DAQ_VIDEO.STX0_D0_P and DAQ_VIDEO.STX0_D0_N))	25.718	0.000	172.158	-6.10
DAQ_VIDEO.STX0_D0_N (Differential Net: DIFF_DAQ_VIDEO.STX0_D0 (DAQ_VIDEO.STX0_D0_P and DAQ_VIDEO.STX0_D0_N)	25.718	-0.000	178.264	6.10
DAQ_VIDEO.STX0_D1_P (Differential Net: DIFF_DAQ_VIDEO.STX0_D1 {DAQ_VIDEO.STX0_D1_P and DAQ_VIDEO.STX0_D1_N)}	25.718	0.000	172.300	-6.21
DAQ_VIDEO.STX0_D1_N (Differential Net: DIFF_DAQ_VIDEO.STX0_D1 {DAQ_VIDEO.STX0_D1_P and DAQ_VIDEO.STX0_D1_N]	25.718	-0.000	178.517	6.21
DAQ_VIDEO.STX0_D2_P (Differential Net: DIFF_DAQ_VIDEO.STX0_D2 (DAQ_VIDEO.STX0_D2_P and DAQ_VIDEO.STX0_D2_N))	25.718	0.000	177.681	-0.57
DAQ_VIDEO.STX0_D2_N (Differential Net: DIFF_DAQ_VIDEO.STX0_D2 (DAQ_VIDEO.STX0_D2_P and DAQ_VIDEO.STX0_D2_N)	25.718	-0.000	178.259	0.57
DAQ_VIDEO.STX0_D3_P (Differential Net: DIFF_DAQ_VIDEO.STX0_D2 (DAQ_VIDEO.STX0_D3_P and DAQ_VIDEO.STX0_D3_N))	25.718	0.000	177.681	-0.57
DAQ_VIDEO.STX0_D3_N (Differential Net: DIFF_DAQ_VIDEO.STX0_D2 (DAQ_VIDEO.STX0_D3_P and DAQ_VIDEO.STX0_D3_N)	25.718	-0.000	178.259	0.57

From the above net delay report, DAQ_VIDEO signal

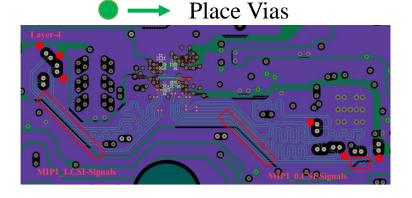
groups delay mismatch is within tolerance (ps).

Both the values are meeting the requirement and the results are **pass**.

An ISO-27001 ISMS Certified Company


Layout Recommendations

The PCB layout's performance can be increased by the following recommendations


1. Increase the spacing between high speed signal traces and GND polygon.

5H (5 x 5= 25 mils)

- 2. Give proper **GND reference** plane for the high speed signal traces. Try to give **sandwich reference** plane for these signals.
- 3. Add GND Vias near the Signal Layer Switching Vias.
- 4. Use **arc routing** is preferred over **45-degree** angles for high-speed signals to reduce impedance discontinuities and signal reflections, enhancing signal integrity and performance."

Certified Compa

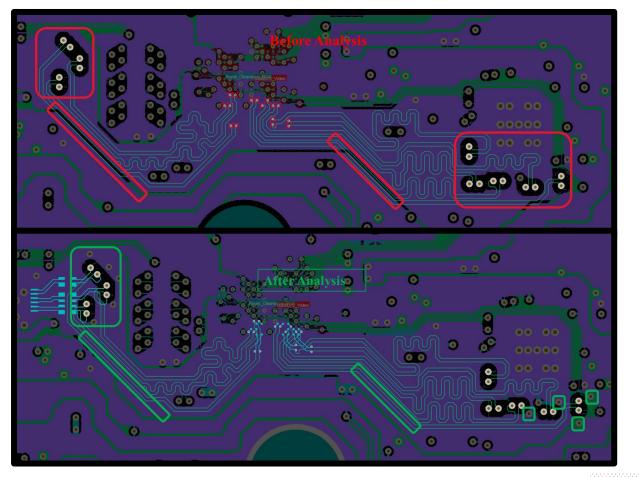
Place Vias

Layout Implementations

Suggested recommendations are incorporated to the PCB layout to enhance its performance.

MIPI Signals: MIPI_0 – De-serializer to SoC MIPI_1 – Video Decoder to SoC

Clearance:


Routing optimized to increase the spacing (5H - 25 mils) between GND and MIPI signal traces.

Vias:

GND vias are placed near to the switching places of the Signal traces.

Reference Plane:

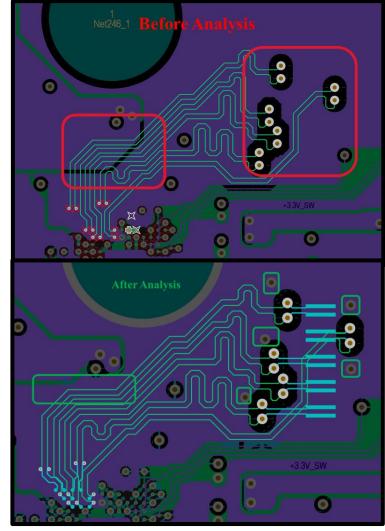
Proper GND reference plane are provided for high speed signals in Layer-4.

Certified Compar

Layout Implementations (Cont.)

DAQ_VIDEO Signals : SOC to Expansion Connector

Clearance:


Routing optimized to increase the spacing between GND and DAQ_VIDEO signal traces.

Vias:

GND vias are placed near to the switching places of the Signal traces.

Reference Plane:

Proper GND reference plane are provided for high speed signals in Layer-4.

Customer Testimonial

Delighted to share a testimonial from a distinguished client, highlighting the outstanding success and significant benefits of our Signal Integrity Analysis.

"Engaging the team for Signal Integrity (SI) Analysis revolutionized our project. Their meticulous approach ensured superior quality by identifying potential issues and providing effective solutions. The detailed insights gained during the analysis were invaluable, significantly contributing to our project's overall success. Their cost-effective modifications to copper pours highlighted their dedication to resource optimization, while their timely delivery showcased their efficiency. We are extremely satisfied with the quality and promptness of the SI analysis, which has greatly enhanced the reliability and efficiency of our electronic design."

Conclusion

- ✤ We delivered a comprehensive set of recommendations to enhance high-speed signal performance and implemented layout design changes to improve overall efficiency, underscoring our commitment to highquality work and technical expertise.
- Our collaboration transcends technical execution; it includes optimizing signal performance in the layout by leveraging our expertise and deep understanding of the client's specific requirements.
- ✤Our dedication to delivering top-tier analysis services highlights our exceptional skills and unwavering reliability in achieving outstanding results.